You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1252 lines
40 KiB

package kafka
import (
"bufio"
"bytes"
"context"
"errors"
"fmt"
"io"
"math"
"net"
"strconv"
"strings"
"sync"
"time"
)
// ErrGroupClosed is returned by ConsumerGroup.Next when the group has already
// been closed.
var ErrGroupClosed = errors.New("consumer group is closed")
// ErrGenerationEnded is returned by the context.Context issued by the
// Generation's Start function when the context has been closed.
var ErrGenerationEnded = errors.New("consumer group generation has ended")
const (
// defaultProtocolType holds the default protocol type documented in the
// kafka protocol
//
// See https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-GroupMembershipAPI
defaultProtocolType = "consumer"
// defaultHeartbeatInterval contains the default time between heartbeats. If
// the coordinator does not receive a heartbeat within the session timeout interval,
// the consumer will be considered dead and the coordinator will rebalance the
// group.
//
// As a rule, the heartbeat interval should be no greater than 1/3 the session timeout.
defaultHeartbeatInterval = 3 * time.Second
// defaultSessionTimeout contains the default interval the coordinator will wait
// for a heartbeat before marking a consumer as dead.
defaultSessionTimeout = 30 * time.Second
// defaultRebalanceTimeout contains the amount of time the coordinator will wait
// for consumers to issue a join group once a rebalance has been requested.
defaultRebalanceTimeout = 30 * time.Second
// defaultJoinGroupBackoff is the amount of time to wait after a failed
// consumer group generation before attempting to re-join.
defaultJoinGroupBackoff = 5 * time.Second
// defaultRetentionTime holds the length of time a the consumer group will be
// saved by kafka. This value tells the broker to use its configured value.
defaultRetentionTime = -1 * time.Millisecond
// defaultPartitionWatchTime contains the amount of time the kafka-go will wait to
// query the brokers looking for partition changes.
defaultPartitionWatchTime = 5 * time.Second
// defaultTimeout is the deadline to set when interacting with the
// consumer group coordinator.
defaultTimeout = 5 * time.Second
)
// ConsumerGroupConfig is a configuration object used to create new instances of
// ConsumerGroup.
type ConsumerGroupConfig struct {
// ID is the consumer group ID. It must not be empty.
ID string
// The list of broker addresses used to connect to the kafka cluster. It
// must not be empty.
Brokers []string
// An dialer used to open connections to the kafka server. This field is
// optional, if nil, the default dialer is used instead.
Dialer *Dialer
// Topics is the list of topics that will be consumed by this group. It
// will usually have a single value, but it is permitted to have multiple
// for more complex use cases.
Topics []string
// GroupBalancers is the priority-ordered list of client-side consumer group
// balancing strategies that will be offered to the coordinator. The first
// strategy that all group members support will be chosen by the leader.
//
// Default: [Range, RoundRobin]
GroupBalancers []GroupBalancer
// HeartbeatInterval sets the optional frequency at which the reader sends the consumer
// group heartbeat update.
//
// Default: 3s
HeartbeatInterval time.Duration
// PartitionWatchInterval indicates how often a reader checks for partition changes.
// If a reader sees a partition change (such as a partition add) it will rebalance the group
// picking up new partitions.
//
// Default: 5s
PartitionWatchInterval time.Duration
// WatchForPartitionChanges is used to inform kafka-go that a consumer group should be
// polling the brokers and rebalancing if any partition changes happen to the topic.
WatchPartitionChanges bool
// SessionTimeout optionally sets the length of time that may pass without a heartbeat
// before the coordinator considers the consumer dead and initiates a rebalance.
//
// Default: 30s
SessionTimeout time.Duration
// RebalanceTimeout optionally sets the length of time the coordinator will wait
// for members to join as part of a rebalance. For kafka servers under higher
// load, it may be useful to set this value higher.
//
// Default: 30s
RebalanceTimeout time.Duration
// JoinGroupBackoff optionally sets the length of time to wait before re-joining
// the consumer group after an error.
//
// Default: 5s
JoinGroupBackoff time.Duration
// RetentionTime optionally sets the length of time the consumer group will
// be saved by the broker. -1 will disable the setting and leave the
// retention up to the broker's offsets.retention.minutes property. By
// default, that setting is 1 day for kafka < 2.0 and 7 days for kafka >=
// 2.0.
//
// Default: -1
RetentionTime time.Duration
// StartOffset determines from whence the consumer group should begin
// consuming when it finds a partition without a committed offset. If
// non-zero, it must be set to one of FirstOffset or LastOffset.
//
// Default: FirstOffset
StartOffset int64
// If not nil, specifies a logger used to report internal changes within the
// reader.
Logger Logger
// ErrorLogger is the logger used to report errors. If nil, the reader falls
// back to using Logger instead.
ErrorLogger Logger
// Timeout is the network timeout used when communicating with the consumer
// group coordinator. This value should not be too small since errors
// communicating with the broker will generally cause a consumer group
// rebalance, and it's undesirable that a transient network error intoduce
// that overhead. Similarly, it should not be too large or the consumer
// group may be slow to respond to the coordinator failing over to another
// broker.
//
// Default: 5s
Timeout time.Duration
// connect is a function for dialing the coordinator. This is provided for
// unit testing to mock broker connections.
connect func(dialer *Dialer, brokers ...string) (coordinator, error)
}
// Validate method validates ConsumerGroupConfig properties and sets relevant
// defaults.
func (config *ConsumerGroupConfig) Validate() error {
if len(config.Brokers) == 0 {
return errors.New("cannot create a consumer group with an empty list of broker addresses")
}
if len(config.Topics) == 0 {
return errors.New("cannot create a consumer group without a topic")
}
if config.ID == "" {
return errors.New("cannot create a consumer group without an ID")
}
if config.Dialer == nil {
config.Dialer = DefaultDialer
}
if len(config.GroupBalancers) == 0 {
config.GroupBalancers = []GroupBalancer{
RangeGroupBalancer{},
RoundRobinGroupBalancer{},
}
}
if config.HeartbeatInterval == 0 {
config.HeartbeatInterval = defaultHeartbeatInterval
}
if config.SessionTimeout == 0 {
config.SessionTimeout = defaultSessionTimeout
}
if config.PartitionWatchInterval == 0 {
config.PartitionWatchInterval = defaultPartitionWatchTime
}
if config.RebalanceTimeout == 0 {
config.RebalanceTimeout = defaultRebalanceTimeout
}
if config.JoinGroupBackoff == 0 {
config.JoinGroupBackoff = defaultJoinGroupBackoff
}
if config.RetentionTime == 0 {
config.RetentionTime = defaultRetentionTime
}
if config.HeartbeatInterval < 0 || (config.HeartbeatInterval/time.Millisecond) >= math.MaxInt32 {
return fmt.Errorf("HeartbeatInterval out of bounds: %d", config.HeartbeatInterval)
}
if config.SessionTimeout < 0 || (config.SessionTimeout/time.Millisecond) >= math.MaxInt32 {
return fmt.Errorf("SessionTimeout out of bounds: %d", config.SessionTimeout)
}
if config.RebalanceTimeout < 0 || (config.RebalanceTimeout/time.Millisecond) >= math.MaxInt32 {
return fmt.Errorf("RebalanceTimeout out of bounds: %d", config.RebalanceTimeout)
}
if config.JoinGroupBackoff < 0 || (config.JoinGroupBackoff/time.Millisecond) >= math.MaxInt32 {
return fmt.Errorf("JoinGroupBackoff out of bounds: %d", config.JoinGroupBackoff)
}
if config.RetentionTime < 0 && config.RetentionTime != defaultRetentionTime {
return fmt.Errorf("RetentionTime out of bounds: %d", config.RetentionTime)
}
if config.PartitionWatchInterval < 0 || (config.PartitionWatchInterval/time.Millisecond) >= math.MaxInt32 {
return fmt.Errorf("PartitionWachInterval out of bounds %d", config.PartitionWatchInterval)
}
if config.StartOffset == 0 {
config.StartOffset = FirstOffset
}
if config.StartOffset != FirstOffset && config.StartOffset != LastOffset {
return fmt.Errorf("StartOffset is not valid %d", config.StartOffset)
}
if config.Timeout == 0 {
config.Timeout = defaultTimeout
}
if config.connect == nil {
config.connect = makeConnect(*config)
}
return nil
}
// PartitionAssignment represents the starting state of a partition that has
// been assigned to a consumer.
type PartitionAssignment struct {
// ID is the partition ID.
ID int
// Offset is the initial offset at which this assignment begins. It will
// either be an absolute offset if one has previously been committed for
// the consumer group or a relative offset such as FirstOffset when this
// is the first time the partition have been assigned to a member of the
// group.
Offset int64
}
// genCtx adapts the done channel of the generation to a context.Context. This
// is used by Generation.Start so that we can pass a context to go routines
// instead of passing around channels.
type genCtx struct {
gen *Generation
}
func (c genCtx) Done() <-chan struct{} {
return c.gen.done
}
func (c genCtx) Err() error {
select {
case <-c.gen.done:
return ErrGenerationEnded
default:
return nil
}
}
func (c genCtx) Deadline() (time.Time, bool) {
return time.Time{}, false
}
func (c genCtx) Value(interface{}) interface{} {
return nil
}
// Generation represents a single consumer group generation. The generation
// carries the topic+partition assignments for the given. It also provides
// facilities for committing offsets and for running functions whose lifecycles
// are bound to the generation.
type Generation struct {
// ID is the generation ID as assigned by the consumer group coordinator.
ID int32
// GroupID is the name of the consumer group.
GroupID string
// MemberID is the ID assigned to this consumer by the consumer group
// coordinator.
MemberID string
// Assignments is the initial state of this Generation. The partition
// assignments are grouped by topic.
Assignments map[string][]PartitionAssignment
conn coordinator
// the following fields are used for process accounting to synchronize
// between Start and close. lock protects all of them. done is closed
// when the generation is ending in order to signal that the generation
// should start self-desructing. closed protects against double-closing
// the done chan. routines is a count of running go routines that have been
// launched by Start. joined will be closed by the last go routine to exit.
lock sync.Mutex
done chan struct{}
closed bool
routines int
joined chan struct{}
retentionMillis int64
log func(func(Logger))
logError func(func(Logger))
}
// close stops the generation and waits for all functions launched via Start to
// terminate.
func (g *Generation) close() {
g.lock.Lock()
if !g.closed {
close(g.done)
g.closed = true
}
// determine whether any go routines are running that we need to wait for.
// waiting needs to happen outside of the critical section.
r := g.routines
g.lock.Unlock()
// NOTE: r will be zero if no go routines were ever launched. no need to
// wait in that case.
if r > 0 {
<-g.joined
}
}
// Start launches the provided function in a go routine and adds accounting such
// that when the function exits, it stops the current generation (if not
// already in the process of doing so).
//
// The provided function MUST support cancellation via the ctx argument and exit
// in a timely manner once the ctx is complete. When the context is closed, the
// context's Error() function will return ErrGenerationEnded.
//
// When closing out a generation, the consumer group will wait for all functions
// launched by Start to exit before the group can move on and join the next
// generation. If the function does not exit promptly, it will stop forward
// progress for this consumer and potentially cause consumer group membership
// churn.
func (g *Generation) Start(fn func(ctx context.Context)) {
g.lock.Lock()
defer g.lock.Unlock()
// this is an edge case: if the generation has already closed, then it's
// possible that the close func has already waited on outstanding go
// routines and exited.
//
// nonetheless, it's important to honor that the fn is invoked in case the
// calling function is waiting e.g. on a channel send or a WaitGroup. in
// such a case, fn should immediately exit because ctx.Err() will return
// ErrGenerationEnded.
if g.closed {
go fn(genCtx{g})
return
}
// register that there is one more go routine that's part of this gen.
g.routines++
go func() {
fn(genCtx{g})
g.lock.Lock()
// shut down the generation as soon as one function exits. this is
// different from close() in that it doesn't wait for all go routines in
// the generation to exit.
if !g.closed {
close(g.done)
g.closed = true
}
g.routines--
// if this was the last go routine in the generation, close the joined
// chan so that close() can exit if it's waiting.
if g.routines == 0 {
close(g.joined)
}
g.lock.Unlock()
}()
}
// CommitOffsets commits the provided topic+partition+offset combos to the
// consumer group coordinator. This can be used to reset the consumer to
// explicit offsets.
func (g *Generation) CommitOffsets(offsets map[string]map[int]int64) error {
if len(offsets) == 0 {
return nil
}
topics := make([]offsetCommitRequestV2Topic, 0, len(offsets))
for topic, partitions := range offsets {
t := offsetCommitRequestV2Topic{Topic: topic}
for partition, offset := range partitions {
t.Partitions = append(t.Partitions, offsetCommitRequestV2Partition{
Partition: int32(partition),
Offset: offset,
})
}
topics = append(topics, t)
}
request := offsetCommitRequestV2{
GroupID: g.GroupID,
GenerationID: g.ID,
MemberID: g.MemberID,
RetentionTime: g.retentionMillis,
Topics: topics,
}
_, err := g.conn.offsetCommit(request)
if err == nil {
// if logging is enabled, print out the partitions that were committed.
g.log(func(l Logger) {
var report []string
for _, t := range request.Topics {
report = append(report, fmt.Sprintf("\ttopic: %s", t.Topic))
for _, p := range t.Partitions {
report = append(report, fmt.Sprintf("\t\tpartition %d: %d", p.Partition, p.Offset))
}
}
l.Printf("committed offsets for group %s: \n%s", g.GroupID, strings.Join(report, "\n"))
})
}
return err
}
// heartbeatLoop checks in with the consumer group coordinator at the provided
// interval. It exits if it ever encounters an error, which would signal the
// end of the generation.
func (g *Generation) heartbeatLoop(interval time.Duration) {
g.Start(func(ctx context.Context) {
g.log(func(l Logger) {
l.Printf("started heartbeat for group, %v [%v]", g.GroupID, interval)
})
defer g.log(func(l Logger) {
l.Printf("stopped heartbeat for group %s\n", g.GroupID)
})
ticker := time.NewTicker(interval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
_, err := g.conn.heartbeat(heartbeatRequestV0{
GroupID: g.GroupID,
GenerationID: g.ID,
MemberID: g.MemberID,
})
if err != nil {
return
}
}
}
})
}
// partitionWatcher queries kafka and watches for partition changes, triggering
// a rebalance if changes are found. Similar to heartbeat it's okay to return on
// error here as if you are unable to ask a broker for basic metadata you're in
// a bad spot and should rebalance. Commonly you will see an error here if there
// is a problem with the connection to the coordinator and a rebalance will
// establish a new connection to the coordinator.
func (g *Generation) partitionWatcher(interval time.Duration, topic string) {
g.Start(func(ctx context.Context) {
g.log(func(l Logger) {
l.Printf("started partition watcher for group, %v, topic %v [%v]", g.GroupID, topic, interval)
})
defer g.log(func(l Logger) {
l.Printf("stopped partition watcher for group, %v, topic %v", g.GroupID, topic)
})
ticker := time.NewTicker(interval)
defer ticker.Stop()
ops, err := g.conn.readPartitions(topic)
if err != nil {
g.logError(func(l Logger) {
l.Printf("Problem getting partitions during startup, %v\n, Returning and setting up nextGeneration", err)
})
return
}
oParts := len(ops)
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
ops, err := g.conn.readPartitions(topic)
switch {
case err == nil, errors.Is(err, UnknownTopicOrPartition):
if len(ops) != oParts {
g.log(func(l Logger) {
l.Printf("Partition changes found, reblancing group: %v.", g.GroupID)
})
return
}
default:
g.logError(func(l Logger) {
l.Printf("Problem getting partitions while checking for changes, %v", err)
})
var kafkaError Error
if errors.As(err, &kafkaError) {
continue
}
// other errors imply that we lost the connection to the coordinator, so we
// should abort and reconnect.
return
}
}
}
})
}
// coordinator is a subset of the functionality in Conn in order to facilitate
// testing the consumer group...especially for error conditions that are
// difficult to instigate with a live broker running in docker.
type coordinator interface {
io.Closer
findCoordinator(findCoordinatorRequestV0) (findCoordinatorResponseV0, error)
joinGroup(joinGroupRequestV1) (joinGroupResponseV1, error)
syncGroup(syncGroupRequestV0) (syncGroupResponseV0, error)
leaveGroup(leaveGroupRequestV0) (leaveGroupResponseV0, error)
heartbeat(heartbeatRequestV0) (heartbeatResponseV0, error)
offsetFetch(offsetFetchRequestV1) (offsetFetchResponseV1, error)
offsetCommit(offsetCommitRequestV2) (offsetCommitResponseV2, error)
readPartitions(...string) ([]Partition, error)
}
// timeoutCoordinator wraps the Conn to ensure that every operation has a
// deadline. Otherwise, it would be possible for requests to block indefinitely
// if the remote server never responds. There are many spots where the consumer
// group needs to interact with the broker, so it feels less error prone to
// factor all of the deadline management into this shared location as opposed to
// peppering it all through where the code actually interacts with the broker.
type timeoutCoordinator struct {
timeout time.Duration
sessionTimeout time.Duration
rebalanceTimeout time.Duration
conn *Conn
}
func (t *timeoutCoordinator) Close() error {
return t.conn.Close()
}
func (t *timeoutCoordinator) findCoordinator(req findCoordinatorRequestV0) (findCoordinatorResponseV0, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return findCoordinatorResponseV0{}, err
}
return t.conn.findCoordinator(req)
}
func (t *timeoutCoordinator) joinGroup(req joinGroupRequestV1) (joinGroupResponseV1, error) {
// in the case of join group, the consumer group coordinator may wait up
// to rebalance timeout in order to wait for all members to join.
if err := t.conn.SetDeadline(time.Now().Add(t.timeout + t.rebalanceTimeout)); err != nil {
return joinGroupResponseV1{}, err
}
return t.conn.joinGroup(req)
}
func (t *timeoutCoordinator) syncGroup(req syncGroupRequestV0) (syncGroupResponseV0, error) {
// in the case of sync group, the consumer group leader is given up to
// the session timeout to respond before the coordinator will give up.
if err := t.conn.SetDeadline(time.Now().Add(t.timeout + t.sessionTimeout)); err != nil {
return syncGroupResponseV0{}, err
}
return t.conn.syncGroup(req)
}
func (t *timeoutCoordinator) leaveGroup(req leaveGroupRequestV0) (leaveGroupResponseV0, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return leaveGroupResponseV0{}, err
}
return t.conn.leaveGroup(req)
}
func (t *timeoutCoordinator) heartbeat(req heartbeatRequestV0) (heartbeatResponseV0, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return heartbeatResponseV0{}, err
}
return t.conn.heartbeat(req)
}
func (t *timeoutCoordinator) offsetFetch(req offsetFetchRequestV1) (offsetFetchResponseV1, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return offsetFetchResponseV1{}, err
}
return t.conn.offsetFetch(req)
}
func (t *timeoutCoordinator) offsetCommit(req offsetCommitRequestV2) (offsetCommitResponseV2, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return offsetCommitResponseV2{}, err
}
return t.conn.offsetCommit(req)
}
func (t *timeoutCoordinator) readPartitions(topics ...string) ([]Partition, error) {
if err := t.conn.SetDeadline(time.Now().Add(t.timeout)); err != nil {
return nil, err
}
return t.conn.ReadPartitions(topics...)
}
// NewConsumerGroup creates a new ConsumerGroup. It returns an error if the
// provided configuration is invalid. It does not attempt to connect to the
// Kafka cluster. That happens asynchronously, and any errors will be reported
// by Next.
func NewConsumerGroup(config ConsumerGroupConfig) (*ConsumerGroup, error) {
if err := config.Validate(); err != nil {
return nil, err
}
cg := &ConsumerGroup{
config: config,
next: make(chan *Generation),
errs: make(chan error),
done: make(chan struct{}),
}
cg.wg.Add(1)
go func() {
cg.run()
cg.wg.Done()
}()
return cg, nil
}
// ConsumerGroup models a Kafka consumer group. A caller doesn't interact with
// the group directly. Rather, they interact with a Generation. Every time a
// member enters or exits the group, it results in a new Generation. The
// Generation is where partition assignments and offset management occur.
// Callers will use Next to get a handle to the Generation.
type ConsumerGroup struct {
config ConsumerGroupConfig
next chan *Generation
errs chan error
closeOnce sync.Once
wg sync.WaitGroup
done chan struct{}
}
// Close terminates the current generation by causing this member to leave and
// releases all local resources used to participate in the consumer group.
// Close will also end the current generation if it is still active.
func (cg *ConsumerGroup) Close() error {
cg.closeOnce.Do(func() {
close(cg.done)
})
cg.wg.Wait()
return nil
}
// Next waits for the next consumer group generation. There will never be two
// active generations. Next will never return a new generation until the
// previous one has completed.
//
// If there are errors setting up the next generation, they will be surfaced
// here.
//
// If the ConsumerGroup has been closed, then Next will return ErrGroupClosed.
func (cg *ConsumerGroup) Next(ctx context.Context) (*Generation, error) {
select {
case <-ctx.Done():
return nil, ctx.Err()
case <-cg.done:
return nil, ErrGroupClosed
case err := <-cg.errs:
return nil, err
case next := <-cg.next:
return next, nil
}
}
func (cg *ConsumerGroup) run() {
// the memberID is the only piece of information that is maintained across
// generations. it starts empty and will be assigned on the first nextGeneration
// when the joinGroup request is processed. it may change again later if
// the CG coordinator fails over or if the member is evicted. otherwise, it
// will be constant for the lifetime of this group.
var memberID string
var err error
for {
memberID, err = cg.nextGeneration(memberID)
// backoff will be set if this go routine should sleep before continuing
// to the next generation. it will be non-nil in the case of an error
// joining or syncing the group.
var backoff <-chan time.Time
switch {
case err == nil:
// no error...the previous generation finished normally.
continue
case errors.Is(err, ErrGroupClosed):
// the CG has been closed...leave the group and exit loop.
_ = cg.leaveGroup(memberID)
return
case errors.Is(err, RebalanceInProgress):
// in case of a RebalanceInProgress, don't leave the group or
// change the member ID, but report the error. the next attempt
// to join the group will then be subject to the rebalance
// timeout, so the broker will be responsible for throttling
// this loop.
default:
// leave the group and report the error if we had gotten far
// enough so as to have a member ID. also clear the member id
// so we don't attempt to use it again. in order to avoid
// a tight error loop, backoff before the next attempt to join
// the group.
_ = cg.leaveGroup(memberID)
memberID = ""
backoff = time.After(cg.config.JoinGroupBackoff)
}
// ensure that we exit cleanly in case the CG is done and no one is
// waiting to receive on the unbuffered error channel.
select {
case <-cg.done:
return
case cg.errs <- err:
}
// backoff if needed, being sure to exit cleanly if the CG is done.
if backoff != nil {
select {
case <-cg.done:
// exit cleanly if the group is closed.
return
case <-backoff:
}
}
}
}
func (cg *ConsumerGroup) nextGeneration(memberID string) (string, error) {
// get a new connection to the coordinator on each loop. the previous
// generation could have exited due to losing the connection, so this
// ensures that we always have a clean starting point. it means we will
// re-connect in certain cases, but that shouldn't be an issue given that
// rebalances are relatively infrequent under normal operating
// conditions.
conn, err := cg.coordinator()
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Unable to establish connection to consumer group coordinator for group %s: %v", cg.config.ID, err)
})
return memberID, err // a prior memberID may still be valid, so don't return ""
}
defer conn.Close()
var generationID int32
var groupAssignments GroupMemberAssignments
var assignments map[string][]int32
// join group. this will join the group and prepare assignments if our
// consumer is elected leader. it may also change or assign the member ID.
memberID, generationID, groupAssignments, err = cg.joinGroup(conn, memberID)
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Failed to join group %s: %v", cg.config.ID, err)
})
return memberID, err
}
cg.withLogger(func(log Logger) {
log.Printf("Joined group %s as member %s in generation %d", cg.config.ID, memberID, generationID)
})
// sync group
assignments, err = cg.syncGroup(conn, memberID, generationID, groupAssignments)
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Failed to sync group %s: %v", cg.config.ID, err)
})
return memberID, err
}
// fetch initial offsets.
var offsets map[string]map[int]int64
offsets, err = cg.fetchOffsets(conn, assignments)
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("Failed to fetch offsets for group %s: %v", cg.config.ID, err)
})
return memberID, err
}
// create the generation.
gen := Generation{
ID: generationID,
GroupID: cg.config.ID,
MemberID: memberID,
Assignments: cg.makeAssignments(assignments, offsets),
conn: conn,
done: make(chan struct{}),
joined: make(chan struct{}),
retentionMillis: int64(cg.config.RetentionTime / time.Millisecond),
log: cg.withLogger,
logError: cg.withErrorLogger,
}
// spawn all of the go routines required to facilitate this generation. if
// any of these functions exit, then the generation is determined to be
// complete.
gen.heartbeatLoop(cg.config.HeartbeatInterval)
if cg.config.WatchPartitionChanges {
for _, topic := range cg.config.Topics {
gen.partitionWatcher(cg.config.PartitionWatchInterval, topic)
}
}
// make this generation available for retrieval. if the CG is closed before
// we can send it on the channel, exit. that case is required b/c the next
// channel is unbuffered. if the caller to Next has already bailed because
// it's own teardown logic has been invoked, this would deadlock otherwise.
select {
case <-cg.done:
gen.close()
return memberID, ErrGroupClosed // ErrGroupClosed will trigger leave logic.
case cg.next <- &gen:
}
// wait for generation to complete. if the CG is closed before the
// generation is finished, exit and leave the group.
select {
case <-cg.done:
gen.close()
return memberID, ErrGroupClosed // ErrGroupClosed will trigger leave logic.
case <-gen.done:
// time for next generation! make sure all the current go routines exit
// before continuing onward.
gen.close()
return memberID, nil
}
}
// connect returns a connection to ANY broker.
func makeConnect(config ConsumerGroupConfig) func(dialer *Dialer, brokers ...string) (coordinator, error) {
return func(dialer *Dialer, brokers ...string) (coordinator, error) {
var err error
for _, broker := range brokers {
var conn *Conn
if conn, err = dialer.Dial("tcp", broker); err == nil {
return &timeoutCoordinator{
conn: conn,
timeout: config.Timeout,
sessionTimeout: config.SessionTimeout,
rebalanceTimeout: config.RebalanceTimeout,
}, nil
}
}
return nil, err // err will be non-nil
}
}
// coordinator establishes a connection to the coordinator for this consumer
// group.
func (cg *ConsumerGroup) coordinator() (coordinator, error) {
// NOTE : could try to cache the coordinator to avoid the double connect
// here. since consumer group balances happen infrequently and are
// an expensive operation, we're not currently optimizing that case
// in order to keep the code simpler.
conn, err := cg.config.connect(cg.config.Dialer, cg.config.Brokers...)
if err != nil {
return nil, err
}
defer conn.Close()
out, err := conn.findCoordinator(findCoordinatorRequestV0{
CoordinatorKey: cg.config.ID,
})
if err == nil && out.ErrorCode != 0 {
err = Error(out.ErrorCode)
}
if err != nil {
return nil, err
}
address := net.JoinHostPort(out.Coordinator.Host, strconv.Itoa(int(out.Coordinator.Port)))
return cg.config.connect(cg.config.Dialer, address)
}
// joinGroup attempts to join the reader to the consumer group.
// Returns GroupMemberAssignments is this Reader was selected as
// the leader. Otherwise, GroupMemberAssignments will be nil.
//
// Possible kafka error codes returned:
// * GroupLoadInProgress:
// * GroupCoordinatorNotAvailable:
// * NotCoordinatorForGroup:
// * InconsistentGroupProtocol:
// * InvalidSessionTimeout:
// * GroupAuthorizationFailed:
func (cg *ConsumerGroup) joinGroup(conn coordinator, memberID string) (string, int32, GroupMemberAssignments, error) {
request, err := cg.makeJoinGroupRequestV1(memberID)
if err != nil {
return "", 0, nil, err
}
response, err := conn.joinGroup(request)
if err == nil && response.ErrorCode != 0 {
err = Error(response.ErrorCode)
}
if err != nil {
return "", 0, nil, err
}
memberID = response.MemberID
generationID := response.GenerationID
cg.withLogger(func(l Logger) {
l.Printf("joined group %s as member %s in generation %d", cg.config.ID, memberID, generationID)
})
var assignments GroupMemberAssignments
if iAmLeader := response.MemberID == response.LeaderID; iAmLeader {
v, err := cg.assignTopicPartitions(conn, response)
if err != nil {
return memberID, 0, nil, err
}
assignments = v
cg.withLogger(func(l Logger) {
for memberID, assignment := range assignments {
for topic, partitions := range assignment {
l.Printf("assigned member/topic/partitions %v/%v/%v", memberID, topic, partitions)
}
}
})
}
cg.withLogger(func(l Logger) {
l.Printf("joinGroup succeeded for response, %v. generationID=%v, memberID=%v", cg.config.ID, response.GenerationID, response.MemberID)
})
return memberID, generationID, assignments, nil
}
// makeJoinGroupRequestV1 handles the logic of constructing a joinGroup
// request.
func (cg *ConsumerGroup) makeJoinGroupRequestV1(memberID string) (joinGroupRequestV1, error) {
request := joinGroupRequestV1{
GroupID: cg.config.ID,
MemberID: memberID,
SessionTimeout: int32(cg.config.SessionTimeout / time.Millisecond),
RebalanceTimeout: int32(cg.config.RebalanceTimeout / time.Millisecond),
ProtocolType: defaultProtocolType,
}
for _, balancer := range cg.config.GroupBalancers {
userData, err := balancer.UserData()
if err != nil {
return joinGroupRequestV1{}, fmt.Errorf("unable to construct protocol metadata for member, %v: %w", balancer.ProtocolName(), err)
}
request.GroupProtocols = append(request.GroupProtocols, joinGroupRequestGroupProtocolV1{
ProtocolName: balancer.ProtocolName(),
ProtocolMetadata: groupMetadata{
Version: 1,
Topics: cg.config.Topics,
UserData: userData,
}.bytes(),
})
}
return request, nil
}
// assignTopicPartitions uses the selected GroupBalancer to assign members to
// their various partitions.
func (cg *ConsumerGroup) assignTopicPartitions(conn coordinator, group joinGroupResponseV1) (GroupMemberAssignments, error) {
cg.withLogger(func(l Logger) {
l.Printf("selected as leader for group, %s\n", cg.config.ID)
})
balancer, ok := findGroupBalancer(group.GroupProtocol, cg.config.GroupBalancers)
if !ok {
// NOTE : this shouldn't happen in practice...the broker should not
// return successfully from joinGroup unless all members support
// at least one common protocol.
return nil, fmt.Errorf("unable to find selected balancer, %v, for group, %v", group.GroupProtocol, cg.config.ID)
}
members, err := cg.makeMemberProtocolMetadata(group.Members)
if err != nil {
return nil, err
}
topics := extractTopics(members)
partitions, err := conn.readPartitions(topics...)
// it's not a failure if the topic doesn't exist yet. it results in no
// assignments for the topic. this matches the behavior of the official
// clients: java, python, and librdkafka.
// a topic watcher can trigger a rebalance when the topic comes into being.
if err != nil && !errors.Is(err, UnknownTopicOrPartition) {
return nil, err
}
cg.withLogger(func(l Logger) {
l.Printf("using '%v' balancer to assign group, %v", group.GroupProtocol, cg.config.ID)
for _, member := range members {
l.Printf("found member: %v/%#v", member.ID, member.UserData)
}
for _, partition := range partitions {
l.Printf("found topic/partition: %v/%v", partition.Topic, partition.ID)
}
})
return balancer.AssignGroups(members, partitions), nil
}
// makeMemberProtocolMetadata maps encoded member metadata ([]byte) into []GroupMember.
func (cg *ConsumerGroup) makeMemberProtocolMetadata(in []joinGroupResponseMemberV1) ([]GroupMember, error) {
members := make([]GroupMember, 0, len(in))
for _, item := range in {
metadata := groupMetadata{}
reader := bufio.NewReader(bytes.NewReader(item.MemberMetadata))
if remain, err := (&metadata).readFrom(reader, len(item.MemberMetadata)); err != nil || remain != 0 {
return nil, fmt.Errorf("unable to read metadata for member, %v: %w", item.MemberID, err)
}
members = append(members, GroupMember{
ID: item.MemberID,
Topics: metadata.Topics,
UserData: metadata.UserData,
})
}
return members, nil
}
// syncGroup completes the consumer group nextGeneration by accepting the
// memberAssignments (if this Reader is the leader) and returning this
// Readers subscriptions topic => partitions
//
// Possible kafka error codes returned:
// * GroupCoordinatorNotAvailable:
// * NotCoordinatorForGroup:
// * IllegalGeneration:
// * RebalanceInProgress:
// * GroupAuthorizationFailed:
func (cg *ConsumerGroup) syncGroup(conn coordinator, memberID string, generationID int32, memberAssignments GroupMemberAssignments) (map[string][]int32, error) {
request := cg.makeSyncGroupRequestV0(memberID, generationID, memberAssignments)
response, err := conn.syncGroup(request)
if err == nil && response.ErrorCode != 0 {
err = Error(response.ErrorCode)
}
if err != nil {
return nil, err
}
assignments := groupAssignment{}
reader := bufio.NewReader(bytes.NewReader(response.MemberAssignments))
if _, err := (&assignments).readFrom(reader, len(response.MemberAssignments)); err != nil {
return nil, err
}
if len(assignments.Topics) == 0 {
cg.withLogger(func(l Logger) {
l.Printf("received empty assignments for group, %v as member %s for generation %d", cg.config.ID, memberID, generationID)
})
}
cg.withLogger(func(l Logger) {
l.Printf("sync group finished for group, %v", cg.config.ID)
})
return assignments.Topics, nil
}
func (cg *ConsumerGroup) makeSyncGroupRequestV0(memberID string, generationID int32, memberAssignments GroupMemberAssignments) syncGroupRequestV0 {
request := syncGroupRequestV0{
GroupID: cg.config.ID,
GenerationID: generationID,
MemberID: memberID,
}
if memberAssignments != nil {
request.GroupAssignments = make([]syncGroupRequestGroupAssignmentV0, 0, 1)
for memberID, topics := range memberAssignments {
topics32 := make(map[string][]int32)
for topic, partitions := range topics {
partitions32 := make([]int32, len(partitions))
for i := range partitions {
partitions32[i] = int32(partitions[i])
}
topics32[topic] = partitions32
}
request.GroupAssignments = append(request.GroupAssignments, syncGroupRequestGroupAssignmentV0{
MemberID: memberID,
MemberAssignments: groupAssignment{
Version: 1,
Topics: topics32,
}.bytes(),
})
}
cg.withLogger(func(logger Logger) {
logger.Printf("Syncing %d assignments for generation %d as member %s", len(request.GroupAssignments), generationID, memberID)
})
}
return request
}
func (cg *ConsumerGroup) fetchOffsets(conn coordinator, subs map[string][]int32) (map[string]map[int]int64, error) {
req := offsetFetchRequestV1{
GroupID: cg.config.ID,
Topics: make([]offsetFetchRequestV1Topic, 0, len(cg.config.Topics)),
}
for _, topic := range cg.config.Topics {
req.Topics = append(req.Topics, offsetFetchRequestV1Topic{
Topic: topic,
Partitions: subs[topic],
})
}
offsets, err := conn.offsetFetch(req)
if err != nil {
return nil, err
}
offsetsByTopic := make(map[string]map[int]int64)
for _, res := range offsets.Responses {
offsetsByPartition := map[int]int64{}
offsetsByTopic[res.Topic] = offsetsByPartition
for _, pr := range res.PartitionResponses {
for _, partition := range subs[res.Topic] {
if partition == pr.Partition {
offset := pr.Offset
if offset < 0 {
offset = cg.config.StartOffset
}
offsetsByPartition[int(partition)] = offset
}
}
}
}
return offsetsByTopic, nil
}
func (cg *ConsumerGroup) makeAssignments(assignments map[string][]int32, offsets map[string]map[int]int64) map[string][]PartitionAssignment {
topicAssignments := make(map[string][]PartitionAssignment)
for _, topic := range cg.config.Topics {
topicPartitions := assignments[topic]
topicAssignments[topic] = make([]PartitionAssignment, 0, len(topicPartitions))
for _, partition := range topicPartitions {
var offset int64
partitionOffsets, ok := offsets[topic]
if ok {
offset, ok = partitionOffsets[int(partition)]
}
if !ok {
offset = cg.config.StartOffset
}
topicAssignments[topic] = append(topicAssignments[topic], PartitionAssignment{
ID: int(partition),
Offset: offset,
})
}
}
return topicAssignments
}
func (cg *ConsumerGroup) leaveGroup(memberID string) error {
// don't attempt to leave the group if no memberID was ever assigned.
if memberID == "" {
return nil
}
cg.withLogger(func(log Logger) {
log.Printf("Leaving group %s, member %s", cg.config.ID, memberID)
})
// IMPORTANT : leaveGroup establishes its own connection to the coordinator
// because it is often called after some other operation failed.
// said failure could be the result of connection-level issues,
// so we want to re-establish the connection to ensure that we
// are able to process the cleanup step.
coordinator, err := cg.coordinator()
if err != nil {
return err
}
_, err = coordinator.leaveGroup(leaveGroupRequestV0{
GroupID: cg.config.ID,
MemberID: memberID,
})
if err != nil {
cg.withErrorLogger(func(log Logger) {
log.Printf("leave group failed for group, %v, and member, %v: %v", cg.config.ID, memberID, err)
})
}
_ = coordinator.Close()
return err
}
func (cg *ConsumerGroup) withLogger(do func(Logger)) {
if cg.config.Logger != nil {
do(cg.config.Logger)
}
}
func (cg *ConsumerGroup) withErrorLogger(do func(Logger)) {
if cg.config.ErrorLogger != nil {
do(cg.config.ErrorLogger)
} else {
cg.withLogger(do)
}
}